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The study of the local structure of hydrodynamic fields in
turbulent flows at high Reynolds numbers was initiated in 1941 by
A, N. Kolmogoroff (1,2) and by A. M. Obukhov (3), by investigating
the question of the local structure of the velocity field in an
incompressible fluld. As the quantitative characteristics of the
structure of this field in the works (1-3), there was used the

structural function of the velocity field
T T
Dyy (r) {Vz(M') - V?,(M)_é s Do () = vg(M") ~ Vn(M)J (1)

L
where v;(M) and Vv;(M') are the projections of the velocity vector
at the polnts M and M* 4n the direction MI—Z, vn(M) and v (M')
are the projections of the velocity vector in a direction perpendicular
to ﬂﬁ?.the line above serves as symbol of the mean value and r 1is
the distance between the points M and M?* (basis of this is that
for large Reynolds numbers for not too great distances r the
quantities D;, and Dpp essentially are considered as depending
only on r, see (1)), In the work (1) the behavior of the functions
Dy; (r) and Dy, (r) are investigated with the aid of dimension
theory and similarity theory in (2), for this end, the equation of

motion is used and finally, in (3) is used the equation of energy
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belance in the spectra of the turbulent stream obtained from the motion
equetion by applying Fourier transformations®. It is essential that
the results, obtained by these three methods, agree; at present these
results are also confirmed by experiment (7, 8).

Recently, A. M. Obukhov (9) applied the development in (1) to a
general representation of the local structure of turbulent streams at
high Reynolds numbers also and to the question of the local structure
of the temperature fields in such streams®. The method of investigating
the structure function of the temperature field in (9) coincides with
the method applied in (1) to study the structure of the velocity field -
namely — dimension and similarity theories. In the present note we show
that the results® obtained in (9) may ve verified and somewhat extended
with the ald of the equations of hydrodynamics.

As in (9), we consider here only the case when there is in the
stream considerable turbulence of dynamic origin and the temperature
pulsations are so small that their influence on the development of
turbulence mpy be neglected, and we will not take into account radiant

heat exchange in the medium and the heat connected to the dissipation

1This latter method of investigating the structure of velocity fields,
in recent years, was repeatedly explained with no essential variation
by a series of authors (4—6).

-

ZApplication of these same representations to the investigation of
pressure and acceleration fields in turbulent flows, see (10, 11).

SLet us sote that these results have already found important applications
in the theory of dissipation of light and radio waves in atmosphere
(12, 13).
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of mechenical energy of turbulence. For these conditions the velocity
field of the stream will satisfy the usual motion equations related to
an incompressible fluid (mean velocity, we consider, essentially, much

less than the speed of sound) and the temperature field by the equation
2
?3+> vy L o xar (2)

(T is the temperature, v, V2, V5 are the components of the velocity
vector, X 1is the coefficient of molecular temperature conduction of
the medium,) Let us note that equation (2) coincides exactly with the
equation of diffusion of certain ingredients in a medium if only by T
the concentration of this ingredient is understood and by X its
molecular coefficient of diffusion. In connection with this, all the
subsequent reasoning {the same, certainly, as all the reasoning contained
in (9)) is related not only to the temperature field but to the field of
concentration of any ingredients suspended or dissolved in a turbulent
flow.

In the case of large Reynolds numbers turbulent motion may be
considered locally homogeneous and locally isotropic (see (1)). Here,

from the assumption of (2) it follows that

LR oo V23 N :
at,LT(M)T(M )_; =2 /. 36 VJ(M)T(M)T(M )J. + 2% [T(M)T(M )] (3)

J=1

where ¢ , £, ga are components of the vector ﬁﬁ% and
1 2
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(see, for example, the derivation of the anslogous equation for the
velocity field in the book of L. D. Landau and E. M. Lifshitz (1&4)
page 119). Using now the continuity equation div V=0, we may express

the right side of equation (2) by the structural formula

_ P >
() =] vy ) ~ v, 00 | [7n") - 700 (1)
: e
Dpp(r) {T(M ) = () (5)
depending only on r4. Here we arrive at the equation
e 3
3 [ N
a“ELT(M)T(M )J; = 5%‘ —é-;[-DlTT( r) *r—-' —XADTT(I‘) (6)

Let us put r=0 1in this equation; then the first term goes to zero
and we obtain the relation

r
1

a _ i
S LT(M)Z} = ~3XD pp0) (7)

defining the velocity of the equalizing temperature (or concentration)
field T(M) and completely analogous to the well known equation defining
the velocity of the dissipation of kinetic energy. The role of the mean
energy dissipation for unit time on unit mass of fluld € here plays the

constant -

N = SXD."TT(O) (8)

% The continuity equation is necessary here in order to be able to express

the mean value vi(M)T(M)T(M') by the structural function Dypp(r).
Here must be used the theorem that in an incompressible fluid the
correlation of the lsotroplc velocity field with any isotropic scaler
field is always identically equal to zero.
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The quantity N was introduced in the reasonings of A. M. Obukhov (9)..

Since the function Dpp(r) is independent of t (see (1)), then from

equations (5), (6) and (7) easily follows the relation

d-DE[‘I.’(I“)\ (9)
dr /

o = _1/urr(r) 2 )>+x /a DTT(r)

= Dy :
+ - r + -

connecting the structural function Dypp(r) and Dpp(r). Integrating
this relétion with respect to r and taking into account the gondition
dDpp(0)

Dypp(0) = ———E;—- = 0, we obtain the equation

ADrp( )
Dypplr) — 2X ?r = =-%Nr (10)

analogous to the equation of A, N. Kolmogoroff (2)

D,,,(r) — 6 AL (11)
r -— v = e - Y
il dr 5

connecting the structural functions D;;(r) and
3

' ]

Dyy7(r) = [Vz(M ) -Vz(M)_j

Equation (8) shows that for small r in equation (10) it is

possible to neglect the first term compared to the second; for such r

Drp(r) %—er (12) .

For large r, conversely, we may neglect in (10) the second term which
describes the molecular temperature conduction (diffusion), so that for

large r

Dypp(r) = —-% Nr (13)
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Let us introduce now in the reasoning the dimensionless quantity

oo D@
~ Dpp(r) /()

For large Reynolds numbers it is essential to consider that for large r

(14)

the quantity F is constant, that is, independent of r>. But from

(13) and (14%) it quickly follows that

-2
DTT(I') = —- %F— Nr [D”(r)? 2

-

(15)

From this equation it is seen, in particular, that the constant F is
always negative: F = -|F|. Using now the well known "2/3 law", from

the works (1-3), for the velocity field

2k 213. 4 u\zls Dyyp ()
A AR oo ee;y > ()

we obtain for sufficiently large r, as found by A. M. Obukhov (9):
from considerations of the law of dimensionality, the "2/3 law" for the

temperature field (or concentration):

Dpp(r) = K N T r =p (17)
where
B

Here the dimensionless constant k2 of Obukhov we-expressedcas having

the simple probability-theoretical sense of the constants S and F.

e

SGenerally speaking F may depend on the internal Reynolds number
(v%)22

* r

= —

F(Re*) tends to the limiting value Feo , we may replace F(Re*) by

Re . By assuming, however, that for Refgw the function

the constant Feo in our case of very large Reynolds numbers of the flo¥

for all sufficiently large r.



